Class 9th Mathematics session 2024-25

Uni	t-1 Matrices and determinants	
	Short Question	
1. 2. 3. 4.	What is a matrix? Give two examples. What is the order of the matrix? Give two examples. What is meant by negative of matrix? If $A = \begin{bmatrix} -1 & 2\\ 2 & 1 \end{bmatrix}$, then find $A + \begin{bmatrix} 1 & 1\\ 2 & 0 \end{bmatrix}$.	
5.	If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.then find $(A-B)^t$	(17/I)
6. 7.	Define transpose of matrix. What are equal matrices? Give one example.	
8.	If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, then verify that $A + A^t$ is symmetric.	(19/I)
9.	Find product of A = $\begin{bmatrix} 1 & 3 \\ 2 & -3 \end{bmatrix}$ and B = $\begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$ i.e AB	
10	Find the additive inverse of matrix. $\begin{bmatrix} -2 & 5\\ 3 & 0 \end{bmatrix}$ (II-24/24/I)	
11	. If $D = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{bmatrix}$, then find $D + \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$.	
12	Find the multiplicative inverse if B= $\begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$	
13	What is a row matrix give one examples.	(16/I)
14	. If $C = \begin{bmatrix} 7 & -9 \\ 3 & 5 \end{bmatrix}$, then find whether C is singular or non-singular.	
15	Determine whether the given matrices are multiplicative inverses of each other. $\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$ and $\begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix}$.	
16	. If A = $\begin{bmatrix} \frac{1}{3} & 5\\ h & 9 \end{bmatrix}$ is a singular matrix then find the value of 'b'.	
17	. What is a column matrix give two examples.	
18	Fine the product of matrices. $\begin{bmatrix} 1 & 2 \\ -3 & 0 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 0 & -4 \end{bmatrix}.$	(19/I)
19	What is a rectangular matrix give two examples.	(13/I)
20	Find the values of a,b,c and d which satisfy the matrix equation $ \begin{bmatrix} a+c & a+2b \\ c-1 & 4d-6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix} $	(<mark>22/I</mark>)
21	Write down the definition of a square matrix. Give one examples.	(23/I-14/II)
22	$ If A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 6 \\ 5 \end{bmatrix} $ then find BA.	
23	. What are null or zero matrix? Give one example.	

24. Determine whether the given matrices are multiplicative inverses of each other.

- $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \text{ and } \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$
- 25. How do we find the transpose of a matrix? Give one example.
- 26. Find the transpose of a matrix. $\begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 0 \end{bmatrix}$
- 27. State and prove the commutative law under addition of matrices.
- 28. Verify that if $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ then $(A^t)^t = A$
- 29. Verify that if $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ then $(B^t)^t = B$
- 30. State and prove the associative law under addition of matrices.
- 31. Find the negative of matrix B if B = $\begin{bmatrix} 2 & -5 \\ 6 & 7 \\ -2 & 1 \end{bmatrix}$
- 32. How do we find the negative of a matrix? Give one example.
- 33. What is a symmetric matrix? Give one example.
- 34. What is a skew-symmetric matrix? Give one example.
- 35. Find $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$
- 36. Write the definition of a diagonal matrix. Give one example.
- 37. What is a scalar matrix? Give one example.
- 38. What is an identity matrix? Give two examples.
- 39. What is a additive identity of a matrix? Explain with example.

40. If B =
$$\begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$$
 then find (-2)B

- 41. What is additive inverse of a matrix? Explain with example.
- 42. Find product of $\begin{bmatrix} 6 \\ 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ (<mark>22/I</mark> 13/I) 43. Find product of $\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \end{bmatrix}$ (22/II)Find product of $\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ 44. (23/I)45. If C = [1 -1 2] then find C + [-2 1 3](14/I)46. Define singular matrix. Give one example. 47. Define non-singular matrix. Give one example. (14/II)48. Find the determinant of the matrix $A = \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}$ (14/II)49. Check the matrix $\begin{bmatrix} 5 & -10 \\ -2 & 4 \end{bmatrix}$ is a singular or non-singular. 50. If $B = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$, then find whether B is a singular or non-singular.
- 51. How do we find the adjoint of a matrix? Explain with example.
- 52. How do we find the multiplicative inverse of a matrix? Give one example.
- 53. Find the determinant of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
- 54. If $\begin{vmatrix} -2 & x \\ 5 & -10 \end{vmatrix} = 0$ then find the value of 'x'

55. If $X + \begin{bmatrix} -1 & 3 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 7 & -1 \\ 0 & 2 \end{bmatrix}$ then find the value of 'X'

21/IF

(17/I -17/II,15/II,14/I)

(18/I)

<mark>(22/II)</mark>19/II,18/II,15/I)

56. If $\begin{bmatrix} a+3 & 4 \\ 6 & b-1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 6 & 2 \end{bmatrix}$ then find 'a' and 'b'	<mark>(I/21/19/II)</mark>
57. Find $ D $ if $\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$	(<mark>23/I</mark> I 18/II,15/II)
58. Find the determinant of the matrix $B = \begin{bmatrix} 3 & 2 \\ 3 & 2 \end{bmatrix}$	(14/II)
59. Find the determinant of the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$	(14/I)
60. Find the determinant of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & -2 \end{bmatrix}$	(18-I,16/I-15/I)
61. If $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$ then find $3A - 2B$	(16/I)
62 Find the Transpose of the Matrix $\begin{bmatrix} 5 & 1 & -6 \end{bmatrix}$	(21/I)
63. Write order of the matrix C=[2 4] 64. Define square maxtrix	
Long Question	
1. Solve with Cramer Rule $3x - 4y = 4$ $X + 2y = 8$ 2. Solve with Cramer Rule $3x - 2y = 1$ $-2X + 3y = 2$	(15/I) (18/II,15/II)
3. If $A = \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} D = \begin{bmatrix} 3 & 1 \\ -2 & 2 \end{bmatrix}$ then verify that $(DA)^{-1} = A^{-1} D^{-1}$	
4. If $A = \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & -2 \\ 1 & -1 \end{bmatrix}$ then verify $(AB)^{-1} = B^{-1}A^{-1}$	(13 /I)
5. By using matrix inversion method, solve the following equation	(24/I)
$4x - y = 2 \qquad x - 2y = -1.$	
4. Solve with Cramer Rule $2x + y = 3$ $6X + 5y = 1$	(14/I)
5. Let $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ verify that $A(B + C)$	= AB+AC (board Q)
7. Solve with Cramer Rule $2x - 2y = 4$ $3x + 2y = 6$	(18/I, 16/I&II,14/I)
8. If $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$ then find $(A - B)^t = A^t - B^t$	
9. If $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$ then find $2A^t - 3B^t$	
10. If $\begin{bmatrix} 7 & 10 \\ 8 & 1 \end{bmatrix} = 2 \begin{bmatrix} 2 & 4 \\ -3 & a \end{bmatrix} + 3 \begin{bmatrix} 1 & b \\ 8 & -4 \end{bmatrix}$ then find 'a' and 'b'	
11. Solve with Cramer Rule	
3x - 2y = -6 $5x - 2y = -10$.	(19/I)

Solve with Cramer Rule2x - 2y = 4-5x - 2y = -10(22/II)12.Solve the system of linear equation by the Cramer Rule2x - 2y = 4-7x - 2y = -10(II-24)

13. Let
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ verify that $(AB)^{t} = B^{t}A^{t}$

14. The third angle of an isosceles is 16⁰ less than the sum of the two equal angles. Find the three of a triangle by matrix inversion method

15. By using matrix inversion method, solve the following equation		
$4x + y = 9 \qquad -3x - y = -5.$	<mark>(I-23/17</mark> ,	<mark>/I)</mark>
16. Solve with Cramer Rule $4x+2y = 8$ $3x - y = -1$		<mark>I-23/17/II,</mark> 19/II)
17. For the Matrices B = $\begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ and C= $\begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix}$ verify that (B	$C)^{t} = C^{t} B^{t}$	<mark>(21/I)</mark>
18. If $B = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}$ then find BB ⁻¹		(22/II)
19. Solve by using inversion method $4x - y = 2$ $X - 2y = -1$		<mark>(24/I)</mark>
Unit-2 Real and Complex Numbers		
Short Questions		
1. Define rational numbers. Give one example.	(18 / I)	
2. Define irrational numbers. Give one example.	(18 / II)	
3. What is the multiplicative property of real numbers? Explain		
10 . What is the cancellation property for addition of real numbers	ers? Explain	
11 . What is the cancellation property for multiplication of real numbers	? Explain	
12 . Simplify the radical expression $\sqrt[4]{32}$	<mark>(23/II)</mark>	
13 . What is the trichotomy property of real numbers? Explain	(23/II)	
14 . What is the transitive property of real numbers? Explain		
15 . What is the additive property of real numbers for inequalities	es? Explain	
16 . Evaluate (-i) ⁸	(24/I)	
(ii) $(i)^{27}$ (iii) $(-i)^5$	(14 / I)	
17. What is the multiplicative property of real numbers for inequalities?	Explain	
18 . Simplify the radical expression $\sqrt[3]{-125}$	(16 / II)	
19 .Express (2-3i)($\overline{3-2\iota}$) in to the form (a+bi)		
20 Write real and imaginary part of -2-2i	(17/II)	
21 Simplify $(-7 + 3i) (-3 + 2i)$ in the form $(a+bi)$	(19/II)	
22 What is the multiplicative inverse property of real numbers f	or inequalities? I	Explain
23 . What is the concept of radicals and radicands? Explain.		

24	. Simplify the radical expression $\sqrt[3]{\frac{-8}{27}}$ (ii) Simpl	lify $\left(\frac{8}{125}\right)^{-4/3}$	(23/I-15 / II)
25	Simplify the radical expression $\sqrt[4]{81y^{-12} x^{-8}}$	-	(19 / II)
26	Simplify the radical expression $\sqrt[4]{64y^9 x^5}$		(24/I)
27	. Write five properties of radicals.		
28	. Write seven laws of exponents/indices.		
29	. Simplify $\frac{x^{-2} y^{-3} z^7}{x^{-3} y^4}$	(17/	I)
30	Simplify $\left(\frac{x^{-2}y^{-1}z^{-4}}{x^4y^{-3}z^0}\right)^{-3}$	(22/II-14/I))
31	$(2 x^5 y^{-4})(-8 x^{-3} y^2)$	(22/II-18 / II)	
32	. Simplify $5^{2^3} \div (5^2)^3$ (22/I)		
33	$(x^3)^2 \div x^{3^2} (22/\text{II}-23/\text{II}-15/\text{II} \& 14/\text{II})$		
34	. Write the definition of a complex number.		
35	. <mark>Evaluate i⁵⁰</mark>	<mark>(I/21/18/I-17/I -</mark> 15 /	II)
36	. What is the conjugate of a complex number? Exp	lain with Examples.	
37	Solve the following equation for real <i>x</i> and <i>y</i> :		
	(3-2i) (x + yi) = 2(x - 2yi) + 2i - 1.		
38	If z=2+3i and w=5-4i, then prove that $\left[\frac{\overline{z}}{w}\right] = \frac{\overline{z}}{w}$.	
39	$\text{Simplify}_{\frac{4(3)^n}{3^{n+1}-3^n}}.$	(17)	/II)
40	. Separate real and imaginary parts of $(-1 + \sqrt{-2})$) ² .	
41	. Find the value of x and y if $x + iy + 1 = 4 - 3i$	<mark>(21</mark>	<mark>/I)</mark>
42	. Express the complex number 2(5 + 4i) – 3(7 +	+ 4i) in the Standard	d form a + bi. Where
	a and b are real numbers.		
43	. Simplify $(\sqrt{5} - 3i)^2$ and write your answer in the	form of $a + bi$.	(15 /I & 16 II)
44	. Simplify $\frac{-2}{1+i}$ and write your answer in the form o	f a + bi	
45	Simplify $\frac{1}{1+2i}$ and write your answer in the form o	f a + bi (19- <mark>23/</mark>	I)
46	. If $z = 2 + i$, calculate $z + \overline{z}$.	<mark>(24 / I</mark> I)

47 . Solve the equation (2 - 3i) (x + yi) = 4 + i for real x and y.

48 .Simply it
$$\sqrt{\frac{(216)^{2/3} \times (25)^{1/2}}{(0.04)^{-3/2}}}$$
 (15 / II)
49 .Simply It $\sqrt{\frac{(216)^{2/3} \times (25)^{1/2}}{(0.04)^{-1/2}}}$ (II-23/II-22/16 / 1 & II)
50 . Simply It $\frac{(216)^{2/3} \times (25)^{1/3}}{(180)^{1/2} \times (4)^{-1/3} \times (9)^{1/4}}$ (18/I,13/ I)
51 . Simply It $\frac{(21)^{n} \times 3^{5} - (3)^{4n-1} (243)}{(9^{2n}) (3^{3})}$ (24-23-15/1)
52 . Simply It $(2x^{5}y^{-4})(-8x^{-3}y^{2})$ (13 / I)
53 . Prove that $(\frac{x^{a}}{x^{b}})^{a+b} \times (\frac{x^{b}}{x^{c}})^{b+c} \times (\frac{x^{c}}{x^{a}})^{c+a} = 1$ (I-22/14 / II)
54 Simply It $(\frac{a^{21}}{a^{1+m}}) \times (\frac{a^{2m}}{a^{n+m}}) \times (\frac{a^{2n}}{a^{1+n}})$ (18 / II)
55 Simply It $(\frac{a^{p}}{aq})^{p+q} \times (\frac{a^{q}}{ar})^{q+r} \div 5(a^{p}, a^{r})^{p-r}$ (II-24/17/I)
56 . Use laws of exponent to simplify it.
 $\frac{(243)^{-\frac{2}{3}} (32)^{-1/5}}{\sqrt{(196)^{-1}}}$ (I-21/19/I-14/I) (17/II)
57 . Write the real and imaginary parts of the number $(2 + 0i)$. (14 / I)
58 Write the real and imaginary parts of the number $(-1 + 2i)$. (21 / II)
59 . Express the given decimal $0.\overline{23}$ in the form of $\frac{p}{q}$, where $p, q \in z \& q \neq 0$. (16 / I)
60 Express the given decimal $0.\overline{5}$ in the form of $\frac{p}{q}$, where $p, q \in z \& q \neq 0$. (16 / I)
61 Simplify $\sqrt[5]{\frac{3}{32}}$ (16 / I)
62 If $Z = \frac{4-3i}{2+4i}$ then calculate $z - \overline{z}$ (19 / II)

Unit-3 LOGARITHMS

- 1. What is the scientific notation of representing the number? Explain with example.
- 2. Write the following numbers in scientific notation. (i) 5700 (ii) 0.0000067 (iii) 416.9

3.	Write in scientific notation	83,000	(18/II)
4.	Write in scientific notation	49,800,000	(18/I)
5.	Write in scientific notation	0.0074	(17/I)
~			

6. Express the following numbers in ordinary notation

7.	(i) 5.06×10^5 (ii) 7.782×10^{-4} (iii) 9.018×10^{-6}	(19/II, 13/I.16/II)
8.	Express the following numbers in ordinary notation 6×10^{-4}	(19 / I)
9.	What is the logarithm of a real number? Explain with example.	(23/II)
10.	Prove that $\log_a(mn) = \log_a m + \log_a$	
11. 12	Find the common logarithm of the number 0.0034	
12.	$\frac{1}{1}$	(23/11-21 / 1)
13.	Evaluate \log_{128}^{-128}	(15/I)
14.	. 9. Find the value of x from $\log_{81}9 = x$	
15.	. 10. Find the value of x from $\log_{64}8 = \frac{x}{2}$	<mark>(23-13</mark> /I,16/I)
16	. Find the common logarithm of the number 29.326	
17.	. Find log ₄ 2.	
18.	. Find the common logarithm of 0.3206.	
19.	Calculate $\log_2 3 \times \log_3 8$ (23/1)	
20.	$\frac{1}{2} \frac{1}{2} \frac{1}$	(19/1)
21.	$\frac{1}{2} \text{ Calculate log}_{32} \times \log_{281} \left(\frac{21}{11}\right)$	
22.	. If $\log 2 = 0.3010$, $\log 3 = 0.4771$ then find the value of $\log \frac{1}{3}$	
<mark>23</mark> .	. If log2= 0.3010, log3= 0.4771, log5 = 0.6990, then find the value	e of log30 (24/II)
24.	. 18. Given that $A = A_0 e^{-kd}$. If $k = 2$, what should be the value of d to	b make A = $\frac{A_0}{2}$?
25.	. If $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 5 = 0.6990$, then find the value	of \log_{15}^{16}
26.	Find the value of x in $\log x = -1.6238$	
27.	Find the value of x in $\log_{64}x = \frac{-2}{3}$	(<mark>22/II-17/I,18</mark> /II)
27. 28.	Find the value of x in $\log_{64}x = \frac{-2}{3}$. If $\log_{2} = 0.3010$, $\log_{3} = 0.4771$ then find the value of $\log_{2} 24$	(<mark>22/II-17/I,18</mark> /II) (15/II)
27. 28. 29.	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of $\log_2 24$ Find the value of x from $\log_3 x = 4$	(<mark>22/II-17/I,18</mark> /II) (15/II) (<mark>22/I</mark> -17/II,14/I,16/II)
27. 28. 29. 30.	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of $\log_2 24$ Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$	(<mark>22/II-17/I,18</mark> /II) (15/II) (<mark>22/I</mark> -17/II,14/I,16/II) (<mark>21/II</mark> -14/II)
27. 28. 29. 30. <mark>31.</mark>	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$	(<mark>22/II-17/I,18</mark> /II) (15/II) (<mark>22/I</mark> -17/II,14/I,16/II) (<mark>21/II</mark> -14/II) (24/II)
27. 28. 29. 30. <mark>31.</mark> 32.	Find the value of x in $\log_{64x} = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$	(<mark>22/II-17/I,18</mark> /II) (15/II) (<mark>22/I</mark> -17/II,14/I,16/II) (<mark>21/II</mark> -14/II) (24/II) (19/II, 15/II)
27. 28. 29. 30. <mark>31.</mark> 32. 33.	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I)
27. 28. 29. 30. <mark>31.</mark> 32. 33. 34.	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of A $\log_3 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of log 32	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (Board)
27. 28. 29. 30. 31. 32. 33. 34. 35.	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log_3 2$ Use logarithm to find the value of 0.2913×0.004236	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (Board) (16/I)
27. 28. 29. 30. 31. 32. 33. 34. 35. 36.	Find the value of x in $\log_{64x} = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log_3 2$ Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log_2 1 - \log_5$	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (Board) (16/I) (22/I-14/II)
27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37.	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_3 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log_3 2$ Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log_2 1 - \log_5$ Find the value of x in $\log_x = 0.1821$.	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (Board) (16/I) (22/I-14/II)
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of log 32 Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log_2 1 - \log_5$ Find the value of x in $\log_x = 0.1821$. Write in single logarithm $2 \log x - 3 \log y$	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (18/I) (Board) (16/I) (22/I-14/II) (24/I, 22-17-14/II)
27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.	Find the value of x in $\log_{64}x = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of $\log_2 24$ Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log_3 22$ Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log_2 21 - \log_5$ Find the value of x in $\log_x = 0.1821$. Write in single logarithm $2\log_x - 3\log_y$ Find the value of x from $\log_{625} 5 = \frac{1}{4}x$	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (18/I) (Board) (16/I) (22/I-14/II) (24/I, 22-17-14/II) (24/I)
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 	Find the value of x in $\log_{64x} = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of log 24 Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of A $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log 32$ Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log 21 - \log 5$ Find the value of x in $\log x = 0.1821$. Write in single logarithm $2 \log x - 3 \log y$ Find the value of x from $\log_{625} 5 = \frac{1}{4}x$ Use log table to find $\sqrt[5]{2.709} \times \sqrt[7]{1.239}$	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (18/I) (16/I) (22/I-14/II) (24/I, 22-17-14/II) (24/I) (16/I)
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 	Find the value of x in $\log_{64x} = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of $\log_2 24$ Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_a 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log_3 22$ Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log_2 21 - \log_5 5$ Find the value of x in $\log_x = 0.1821$. Write in single logarithm $2\log_x - 3\log_y$ Find the value of x from $\log_{625} 5 = \frac{1}{4}x$ Use log table to find $\sqrt[5]{2.709} \times \sqrt[7]{1.239}$ Use log table to find the value. $\frac{0.678 \times 9.01}{0.0234}$ (23-22-	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (18/I) (18/I) (16/I) (22/I-14/II) (24/I,22-17-14/II) (24/I,22-17-14/II) (24/I) (16/I) 21/II -17/II,18-II,19/I,16/II)
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 	Find the value of x in $\log_{64x} = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of $\log_2 24$ Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log_3 22$ Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log_2 21 - \log_5 5$ Find the value of x in $\log x = 0.1821$. Write in single logarithm $2 \log x - 3 \log y$ Find the value of x from $\log_{625} 5 = \frac{1}{4}x$ Use log table to find $\sqrt[5]{2.709} \times \sqrt[7]{1.239}$ Use log table to find the value. $\frac{0.678 \times 9.01}{0.0234}$ (23-22- Find the value by the use of $\log_3 \sqrt[3]{25.47}$	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (18/I) (Board) (16/I) (22/I-14/II) (24/I, 22-17-14/II) (24/I) (16/I) 21/II -17/II,18-II,19/I,16/II) (14/I)
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 	Find the value of x in $\log_{64x} = \frac{-2}{3}$ If $\log_2 = 0.3010$, $\log_3 = 0.4771$ then find the value of $\log_2 24$ Find the value of x from $\log_3 x = 4$ Find the value of x from $\log_x 64 = 2$ Find the value of a $\log_3 6 = 0.5$ Find the value of x from $\log_2 x = 5$ Find the value of x from $\log_3 x = 5$ If $\log_2 = 0.3010$ then find the value of $\log_3 22$ Use logarithm to find the value of 0.2913×0.004236 Write in single logarithm $\log_2 1 - \log_5 5$ Find the value of x in $\log_x = 0.1821$. Write in single logarithm $2\log_x - 3\log_y$ Find the value of x from $\log_{625} 5 = \frac{1}{4}x$ Use log table to find $\sqrt[5]{2.709} \times \sqrt[7]{1.239}$ Use log table to find the value. Find the value by the use of log: $\sqrt[3]{25.47}$ Use log table to find the value of $\frac{(1.23)(0.6975)}{(0.0075)(1278)}$	(22/II-17/I,18/II) (15/II) (22/I -17/II,14/I,16/II) (21/II -14/II) (24/II) (19/II, 15/II) (18/I) (18/I) (Board) (16/I) (22/I- 14/II) (24/I,22-17-14/II) (24/I) (24/I) (16/I) 21/II -17/II,18-II,19/I,16/II) (14/I)

15. Simplify by combining similar terms. $\sqrt{3} (2\sqrt{3} + 3\sqrt{3})$	(<mark>22/II</mark> -23/I <mark>)</mark>
16.Simplify $(\sqrt{x} + \sqrt{y}) (\sqrt{x} - \sqrt{y})(x + y)(x^2 + y^2)$	
17.Write with example the definition of monomial surd.	(18/II)
18.Write with example the definition of binomial surd.	
19. Rationalize the denominator $\frac{58}{7-2\sqrt{5}}$	
20. If $x = 3 + \sqrt{8}$, then evaluate $\frac{1}{x}$	
21. If P = 2 + $\sqrt{3}$, then evaluate P ² - $\frac{1}{P^2}$ (21/II-22-2	<mark>3</mark> /I)
22. If X = 2 + $\sqrt{3}$, then evaluate X+ $\frac{1}{x}$ (23/II)	
23. If $x + \frac{1}{x} = 3$, find $x^4 + \frac{1}{x^4}$.	(18/I)
24. Find the product $\left(\frac{4}{5}x - \frac{5}{4x}\right)\left(\frac{16}{25}x^2 + \frac{25}{16x^2} + 1\right)$	(16 / I)
25. Reduce to lowest form $\frac{(x+y)^2 - 4xy}{(x-y)^2}$,	(19/II, 15 / II)
26. Find the value ab , when $a+b=5$, $a-b=\sqrt{17}$.	(18/II-2015 / I) [2 marks]
27. Find the value $27x^3 + \frac{1}{27x^3}$ if $(3x + \frac{1}{3x}) = 5$	[4 Marks] (16 / II)
28. If $a + b + c = 6$ and $a^2 + b^2 + c^2 = 24$ then find the value of $ab + b^2 + c^2 = 24$ then find the v	oc+ca (19/I)
29. If $ab+bc+ca = 3$ and $a^2+b^2+c^2=43$ then find the value of a	+b+c (19/II)
30. If $x^2 + y^2 + z^2 = 78$ and $xy + yz + zx = 59$ then find x	+ y + z. (17/II,17/I)
31. If $x^2 + y^2 + z^2 = 98$ and $xy + yz + zx = 42$ then find x -	+ y + z. (<mark>24/I)</mark>
32. If $x^2 + y^2 + z^2 = 81$ and $xy + yz + zx = 46$ then find x -	+ <i>y</i> + <i>z</i> . (24/Ⅱ)
33. If $x^2 + y^2 + z^2 = 64$ and $x + y + z = 12$ then find $xy + y$	<i>z + zx</i> . (<mark>22-23/</mark> II)
34. Find the value of $a^2 + b^2$ if $a + b = 7$, $a - b = 3$.	(<mark>23-15</mark> / II) [2 Marks]
35. Simply $\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$	(15 / II) [4 marks]
36. If $q = \sqrt{5} + 2$ then find the value of $q^2 + \frac{1}{q^2}$	(14 / II) [4 marks]
37. Find $a^2 + b^2$ if $a + b = 10, a - b = 6$.	(14 / II) [2 marks]
38. If $x = -1$, $y = -9$, $z = 4$, find $\frac{x^3y - 2z}{xz}$	(14 / II) [2 marks]

39. If $x = 2 + \sqrt{3}$ then find, $x - \frac{1}{x}$ and $\left(x - \frac{1}{x}\right)^2$	<mark>(21-14 / I)</mark> [4 marks]
40. Rationalize $\frac{\sqrt{3}-1}{\sqrt{3+1}}$	(17/II)
41.Rationalize $\frac{15}{\sqrt{31}-4}$	(23/II)
42. Rationalize $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$	(14/I)
43.Simplify $\left(\sqrt{2} + \frac{1}{\sqrt{3}}\right) \left(\sqrt{2} - \frac{1}{\sqrt{3}}\right)$	(<mark>21-14 / II</mark>)
44.Simplify $(x^2 - 49) \cdot \frac{5x+2}{x+7}$	(23 / I) [2Marks]
45.Simplify $\frac{7xy}{x^2 - 4x + 4} \div \frac{14y}{x^2 - 4}$	(16/I)
46.Simplify $\left(\sqrt{5} + \sqrt{3}\right)^2$	(16 / II)
47. Simplify $\frac{x^2 - 4x + 4}{2x^2 - 8}$ (17-13 /	I) [2 Marks]
48.If $x = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}$ then find $x + \frac{1}{x}$ and $x^2 + \frac{1}{x^2}$	(13 / I)
49.If $x - \frac{1}{x} = 7$ then find $x^3 - \frac{1}{x^3}$	(16 / I) [4marks]
50. If $x = 2 - \sqrt{3}$, then evaluate $\frac{1}{x}$	(2 <mark>2/II</mark> -19/I)
51. Determine the rational number "a" and "b" if $\frac{\sqrt{3}-1}{\sqrt{3}+1} + \frac{\sqrt{3}+1}{\sqrt{3}-1}$	$\frac{1}{1} = a + b\sqrt{3}$
52. Simplify $\frac{\sqrt{18}}{\sqrt{3}\sqrt{2}}$	<mark>(21/I,19/II)</mark>
53. If $x = 4$, $y = -2$, $z = -1$, find $\frac{x^2 y^3 - 5z^4}{xyz}$	(<mark>21/II-18</mark> /I)
54. Reduce to lowest form $\frac{lx+mx-ly-my}{3x^2-3y^2}$	
55.Reduce to lowest form $\frac{x^2 - 4x + 4}{2x^2 - 8}$	(II-24/17/I)
56. Rationalize the denominator $\frac{2}{\sqrt{5}-\sqrt{3}}$	
57. Express in the simplest form $\sqrt{180}$	
58.Simplify $\frac{\sqrt{21}\sqrt{9}}{\sqrt{63}}$	
59.Evaluate $\frac{3x^2\sqrt{y}+6}{5(x+y)}$ for x = -4, y = 9	(17/II)

60. Express in the simplest form $\sqrt[5]{96 x^6 y^7 z^8}$	
61. Simplify $\sqrt[5]{243 x^5 y^{10} z^{15}}$	
62. If $x = 4 - \sqrt{17}$, then Find $\frac{1}{x}$	(24/II)
63.Simplify $2(6\sqrt{5} - 3\sqrt{5})$	(17/I)
64. Simplify $(\sqrt{5} + \sqrt{3}) (\sqrt{5} - \sqrt{3})$	(<mark>22/I</mark>)
65. Find the Conjugate. $9 + \sqrt{2}$	(21/I)
66.Find the value value of x+ y+ z	(24/I)
$X^2 + y^2 + z^2 = 98$ xy + yz + zx = 48	
Unit -5 <u>Factorization</u>	
1. What is factorization? Give one example.	
2. Factorize 3x – 3a + xy – ay	
3. Factorize $4x^2 - (2y - z)^2$	(22-15 / I)
4. Factorize $3x - 243x^3$ (23/I)	
5. Factorize $x^2 - a^2 + 2a - 1$ (24/I) [4 marks	s
6. Factorize $12x^2 - 36x + 27$	(2018 / I)
7. Factorize $x(x-1) - y(y-1)$	(19/I)
8. Factorize 144a ² + 24a + 1	
9. Factorize 1 – 64z ² (24/I)	
10. Factorize $27 + 8x^3$	
11. Factorize x ² - 11x - 42 (II-24/23/II)	
12. Factorize $x^2 + 5x - 36$ (19)	/II)
13. Factorize $4x^4 + 81$	
14. If $(x - 1)$ is a factor of $x^3 - kx^2 + 11x - 6$, then find the values	s of k (17/II)
15. If $(x + 2)$ is a factor of $3x^2-4kx-4k^2$, then find the values	of k (23/I)
16. Find the remainder by remainder theorem when 3x ³ -10	x ² +13x-6 is divided by (x-2).
17. Define remainder theorem	(17/II)
18. Factorize $3x^2 - 75y^2$	(13 / I)
19. Factorize $128am^2 - 242an^2$	(18 / II)
20. Factorize $(5x - \frac{1}{x})^2 + 4(5x - \frac{1}{x}) + 4$	(13 / I)
21. Factorize $1 + 2ab - a^2 - b^2$	(16 / I,15 / I)

22. Factorize the cubic polynomials by factor theorem	(19/II)
$x^3 - 4x^2 + x + 6$	
23. Factorize $8x^3 + 125y^3$	(17-I,15 /I) [2 marks]
24. Use remainder theorem to find remainder ,	
when $3x^3 - 10x^2 + 13x - 6$ is divided by $(x-2)$	(15/II)
25. Factorize (i) $125x^3 - 216y^3$ (ii) $9x^2 + 21x$	- 8 (14 / II) [4 marks]
26. Factorize $a^4 - 4b^4$	(14 / I) [4 marks]
27. Factorize $(x + 1)(x + 2)(x + 3)(x + 4) - 120$	(14 / I) [4 marks]
28. Factorize $5x^2 - 16x - 21$	(16 / II,14 / I) [2 marks]
29. Factorize $8x^2 - 40x + 50$	<mark>(24 / I)</mark> [2 marks]
30. Factorize $25x^2 + 16x - 40x$	(24 /II)
31. Factorize $1 + 2ab - a^2 - b^2$ (6)	16 / I,15 / II) [2marks]
32. Factorize $x^3 + x^2 - 10x + 8$	(16 / II) [4 marks]
33. Factorize $x^3 - 12x^2 + 48x - 64$	(18/ I) [4 marks]
34. Factorize $x^3 + 60x^2 + 150x + 125$	(18/I I) [4 marks]
35. Factorize $8x^3 - 125y^3 - 60x^2y + 150xy^2$	<mark>(21/l) [</mark> 4 marks]
36. Factorize $25x^2 - 10x + 1 - 36x^2$	<mark>(21/II) [</mark> 4 marks]
37. Factorize $\frac{a^2}{b^2} - 2 + \frac{b^2}{a^2}$	(<mark>22/II)</mark>
38. Factorize the cubic polynomials by factor theorem	
$x^3 - 2x^2 - x + 2$	(17-I,14/ II)
39. Factorize the cubic polynomials by factor theorem	
$x^3 - 6x^2 + 3x + 10$ (22/I-19/	I,17-I,14/ II)
40. Factorize the cubic polynomials by factor theorem $w^3 = w^2 = 22w + 40$	(22 / 11)
x - x - 22x + 40 41. Factorize the cubic polynomials by factor theorem	(22/11)
$x^3 + 5x^2 - 2x - 24$	(<mark>23/I)</mark>
$2 \Gamma \Gamma_{\text{Exatorize}} = 0 \kappa^3 = \frac{1}{2}$	
$55.ractorize = 0x = \frac{1}{27y^3}$	(21/ 1-11)
. 42. Factorize the polynomials by factor theorem	1 (<mark>24/ II)</mark>
$x^3 - 6x^2 + 3x + 10$	

Unit-6 <u>Algebraic Manipulation</u>

1.	Define H.C.F	(17-I,18/II)
2.	Find the H.C.F of the polynomials. $x^2 - 4$, $x^2 + 4x + 4$, $2x^2 + x - 6$	(14/II)
3.	Find the H.C.F of the polynomials. $x^2 - 4$, $x^2 + 4x + 4$	(18/I)
4.	Find the H.C.F by factorization. $X^3 - 2x + x$, $x^2 + 2x - 3$, $x^2 + 3x - 4$	(24/II)
5.	Define L.C.M .	<mark>(23/II)</mark>
6.	Find the L.C.M of $p(x) = 12(x^3 - y^3)$ and $q(x) = 8(x^2 - xy^2)$	
7.	Find the H.C.F of the following expressions. $x^2 + 5x + 6$, $x^2 - 4x - 4x - 5x + 6$	12
8.	Find the H.C.F of the following expressions. $18(x^3-9x^2+8x)$, 24	$(x^2 - 3x + 2)$ (21/II)
9.	Find the L.C.M of the following expressions. $39x^7 y^3 z$ and $91x^5 y^4$	$z^{\prime} = \frac{(19/1,11)}{(19/1,11)}$
10.	Find theH .C.F of the following expressions. $39x^2 y^3 z$ and $91x^3 y^3$	$^{0}Z' = \frac{(24/1)}{(17/11)}$
11.	Find the L.C.M of the following expressions. $102x y^2 z$ and $85x^2 y$	z (1//11)
12.	Find the H.C.F by factorization. 8x ⁴ -128 ,12x ³ -96	<mark>(24/II)</mark>
13.	Use factorization to find the square root of the expression $4x^21$	$2xy + 9y^2$ (15/II)
14.	Use factorization to find the square root of the expression x^2 - 1+	· 1/4x ² (22) /I)
15.	Define square root of the algebraic expression with example.	(16/I)
16.	Simplify $\frac{a+b}{a^2-b^2} \div \frac{a^2-ab}{a^2-2ab+b^2}$	<mark>(23-15/I)</mark>
17.	Solve if $A = \frac{a+1}{a-1}$ then find $A - \frac{1}{A}$ (22/II)	
<mark>18.</mark>	Find the H.C.F. of 102x y ² z ,187x102x y z ²	(21/I)
	Long Question	
19.	Find the L.C.M by factorization $x^2 - 25x + 100$, $x^2 - x - 20$	(16/I, 15/I)
20.	Use Division method to find the square root of	
	$4x^2 + 12xy + 9y^2 + 16x + 24y + 16$	(18-II,13/I)
42.1	Jse Division method to find the square root of $9x^4-6x^3+7x^2-2x+1$	(17/11,18-1,15/11)
43.1	Jse Division method to find the HCF of $x^3+3x^2-16x+12$, x^3+x^2-1	0x+8 <mark>(21/II)</mark>
21.	Use Division method to find the square root of	
	$4+25x^2-12x-24x^3+16x^4$	(19/I,19-I,16/II)
22.	If $(x+3)(x-2)$ is the HCF of $P(x) = (x+3)(2x^2-3x+k)$ &	
	$q(x) = (x-2) (3x^2+7x - L)$ then find the value of K & L	(14/I)
23.	Find the square root of $(x^2 + \frac{1}{x^2}) + 10(x + \frac{1}{x}) + 27$	(16/I)
24.	Find the square root of $\frac{1}{16}x^2 - \frac{1}{12}xy + \frac{1}{36}y^2$	(board)
25.	$\frac{x^2}{y^2} - 10\frac{x}{y} + 27 - 10\frac{y}{x} + \frac{y^2}{x^2} $ (22) /I)	
26.	$-\frac{1}{x^2-6x+5}$ (14/II)	
27.	Simplify $\frac{2y^2 + 7y - 4}{3y^2 - 13y + 4} \div \frac{4y^2 - 1}{6y^2 + y - 1}$ (22/II)	
28.	Find the square root of $4x^4+12x^3+x^2-12x+4$	(17-I)

29. Use Division method to find the square root of x^4 -10 x^3 +37 x^2 -60x+36 (24/I)

- 30. find the value of ,"x" for which the expression will become a perfect square $9x^4-12x^3+22x^2-13x+12$ (23-II)
- 31. For what value of "K" (x+4) is the HCF of $x^2 + x (2k+2)$ and $2x^2 + kx 12$ (21-I)
- 32. find the value of l& m for which the expression will become a perfect square $49x^4-70x^3+109x^2+lx+n$ (23-l)

Unit-7 Linear Equations and Inequalities

1. What is the linear equation in one variable. Give examples. 2. Define linear inequality in one variable (I-24/22/Ii-I/23) 3. Solve $\frac{3}{y-1} - 2 = \frac{3y}{y-1}$, $y \neq 0$ 4. Solve the equation $\sqrt{2x-3}$ -7=0 (18/I&II, 15/I) 5. Solve the equation $\frac{2}{3}x - \frac{1}{3}x = x + \frac{1}{6}$ (I/21/19/II-4mark) 6. Solve the equation $\frac{5(x-3)}{6} - x = 1 - \frac{x}{9}$ (21/II-4mark) 7. Solve the equation $\sqrt{3x + 4} = 2$ (II-24/23-II)8. Solve the equation $\sqrt[3]{3x+5} = \sqrt[3]{x-1}$ (17/I)9. equation $\sqrt[3]{2x+3} = \sqrt[3]{x-2}$ (21/II) 10. Solve the equation $\sqrt[3]{2-t} = \sqrt[3]{2t-28}$ (19/I)11. Write the definition of absolute value of a real number. Give example 12. Write four properties of absolute value. 13. Solve |8x-3| = |4x+5|(13/II)14. Solve |3+2x| = |6x-7|(17/I, 16/II) 15. Solve |x+2| - 3 = 5 - |x+2|(15/I)16. Solve for x, 2x+5 = 11(22-23/II-23-21-18/I) 17. Solve for x, $\frac{1}{2} | 3x+2 | -4 = 11$ (19/I,II,18/II) 18. Solve for x, $\frac{1}{2} |x+3| + 21 = 9$ (16/II)19. Define inequalities. Give examples. 20. Solve 9-7x>19-2x 21. Solve the inequality -2 $<\frac{1-2x}{2}$ <1 22. Solve the inequality $3x-10 \le 5 < x+3$ 23. Solve for x $\left|\frac{3-5x}{4}\right| - \frac{1}{3} = \frac{2}{3}$ (I-24/13/I) 24. Solve for x $\left|\frac{x+5}{2-x}\right| = 6$ <mark>(21/II</mark>-15/I) 25. Solve the equation $\sqrt{x-3}$ -7=0 (I-24/13/I) 26. Solve the inequality $3x+1 \le 5x-4$ <mark>(/22-13</mark>-14/I,14/II.15/II) 27. Solve $\frac{3x-1}{3} - \frac{2x}{x-1} = x$ (13/II) 28. Solve $\frac{3x}{2} - \frac{x-2}{3} = \frac{25}{6}$ (16/I)29. Solve $\frac{2}{x^2-1} - \frac{1}{x+1} = \frac{1}{x+1}$ (<mark>22/II-17/I)</mark>

<mark>(21/I-</mark> 17/II)
(18-II , 16/I)
(13/II,14/II)
<mark>(22/I</mark> -17/II,14/I)
(14/I)
(17/II)
(14/II)
<mark>(22/I)</mark>
(24/II)
<mark>(23/II-23-</mark> 18/I)
(15/II)
(19/I,15/II)
(16/I)
(19/II,16/II)

Unit-8 Linear Graphs and Their Application

1. What is Cartesian plane? .	(19/ II,14/I,16	/I)
2. What is an ordered pair of real numbers?		
3. Define origin.	(22-17/II,18,	/I)
4. Check the line x+2=5 is parallel to x-axis or y-axis		
5. Check the line 2x-3y=1 is parallel to x-axis or y- axis		
6. Find the value of m and c of the line $3-2x+y=0$ by	(17/I,17/II,16/	/II)
expressing in the form of y=mx+c		
7. Find the value of m and c of the line $2x+3y-1=0$ by		
expressing in the form of y=mx+c	<mark>(I-24/19/I,16</mark>	<mark>/I)</mark>
8. Verify whether the points lies(i) (-1,1)(ii) (2,3)		
on the line $2x-y+1=0$ or not.	<mark>(23/I-22</mark>	<mark>2/II)</mark>
9. Verify whether the point lies $(2,5)$ on the line $2x-y+1=0$ or not.		(15/II)
10. Does the point P (5,3) lie on the line $2x-y+1=0$?	<mark>(21/II</mark> -1	4/II)
11. Draw the graph for the equation $2x+6=0$	(15/II)
12. Draw the graph for the equation $x=2$	(14/II))
13. Draw the graph of line $x=-4$	<mark>(24</mark>	<mark>/I)</mark>
14. Draw the graph for the equation $y=7$	(23- <mark>21/II)</mark>	
15. Draw the graph y=-1	<mark>(24/II</mark>)
16. Find the value of m and c by expressing the line $x-2y=-2$ in the for	<mark>rm of y=mx+c</mark>	
<mark>(23-19/II, 21-13-14/I)</mark>		
17. Plot two points $P(2,2)$ and $Q(6,2)$ on the graph paper and get the	e line segment.	(13/II)
18. Plot the given points $P(3,2)$ and $Q(6,7)$ on the graph paper.	(17/I)	
19. Define scale of graph.		(13/II)

19.Find the value of m and c of the line 3-2x+y=0 by Expressing in the form of y=m x+c	(18/II)
<u>20.Find the value of m and c of the line 3-4y-5=0by</u>	
Expressing in the form of y=m x+c	<u>(24/II)</u>
21. Draw the points (-3,-3) , (-6,4) on the graph paper.	(<mark>22/I-</mark> 18/II)
22. Find the value of m and c of the line $3x+y-1=0$ by	(18/I)
Expressing in the form of y=m x+c	
23. The formula of degree Fahrenheit is given by $F = \frac{9}{5}C + 32$ if	C = 10 then find F (19/I)
24. Find the value of m and c of the line $2x-y = 7$ by expressing in	n the form of y=mx+c <mark>(22/I)</mark>
25. <mark>Determine the Quadrant in which the points</mark> P(-4, 3), Q(-	5, -2) lies (21/I)
Unit-9 Introduction to Coordinate	e Geometry
1. Let P be the point on x-axis with x-coordinate a and	Q be the point on y-axis with y-
coordinate 'b' as given below. Find the distance betwee	een P and Q, $a = -9, b = -4$
2. What is the coordinate geometry?	(15/1)
3. Determine the Quadrant in which the points lie? $R(2,$	2) and $S(2,-6)$ (16/II)
4. Find the distance between the pairs of points.	
i. $A(-4,\sqrt{2}), B(-4,-3)$	(14/l)
ii. $A(2,-6)$ and $B(3,-6)$.	(1-24/15/1)
iii. $S(-1,3)$ and $R(3,-2)$.	(23/I-22-13/II)
iv. P(1,2) and Q(0,3)	<u>(16/I)</u>
v. A <mark>(-8,1),B(6,1)</mark> (II	-24/13-18/I,21-23-19-15/II)
vi. <mark>A(9,2), B(7,2)</mark>	(II-24/21/I-16/II)
vii. A(3,-11), B(3,-4)	(19/I,16-17-18/II)
5. Define coordinate Axis.	(15/I)
6. What is the distance formula between two points?	(13/I,13/II)
7. Write the formula for the Mid-point of two points.	(14/I)
8. What are collinear points in the plane?	(13/I,15/I)
9. What are non-collinear points in the plane?	(15/I)
10. Use distance formula to verify that the points $A(0,7)$,	B(3,-5), C(-2,15) are collinear.
11. Find the length of the diameter of the circle having Ce	entre at C(-3,6) and passing
through P(1,3).	
12. Find the mid-point of the line segment joining each o	f the pairs of points.
i. A(-4,9), B(-4,-3)	(23/II-17/I)
ii. A(6,6), B(4,-2)	(22/I)
iii. A(9,2), B(7,2)	
(19/II)	
iv. A(3,-11), B(3,-4)	(18-
II,16/II)	
v. A(2,-6) and B(3,-6).	
(18/I)	
vi. A(-7,-5) and B(-5,-7)	(14/II)

(24 (24/II) ((14-<mark>22/I)</mark> (21-19/I) (13-14-16/I,14/II) (21-17/II)

Unit-12 <u>Theorems</u>

Theorem 1: prove that any point on the right bisector of the line segment is equidistant from its end points. (II-24/I-21/II-21/19/I)

Theorem 2: Any point equidistant from the end points of a line segment is on the right bisector of it. (14/II.18/I)

Theorem 3: The right bisectors of the sides of a triangle are concurrent.

(I-23/17/II,619/II,13/II,16/I)

Theorem 4: Any point on the bisector of an angle is equidistant from its arms.

(II-23/I-22/II-22/I-21/II-21/17/I,15/I,16/I,18-II)

Theorem 5: Any point inside an angle, equidistant from its arms, is on the bisector of it. (I-24/15/II)

Theorem 6: The bisectors of the angles of a triangle are concurrent.

(13/I) (14/I)

<u>Unit-16</u>

Theorem 1: Parallelograms on the same base and between the same parallel lines (or of the same
altitude) are equal in area.(I-24/19/I)

Theorem 2<mark>: Parallelograms on equal bases and having the same (or equal) altitude are equal in area. (II-22/16/I,15/II,19/II)</mark>

Theorem 3: Triangles on equal bases and of equal altitudes are equal in area. (II-24/II-23/23/I)

<mark>(II-23/17/I,13/I,14/I,</mark>16/I, 18-II)

Theorem 4: Triangles on the same base and of the same (i.e., equal) altitudes are equal in area.

(I-22/13/II,14/II,15/I ,18/I,17/II)

Unit -`17 <u>Practical Geometry (Triangles)</u>

- Construct a right angled triangle measure of whose hypotenuse is 5cm and one side is 3.2cm. [Hint: Angle in a semicircle is a right angle].
- 2. Construct a right angled isosceles triangle whose hypotenuse is 5.2cm long.
- 3. Construct a triangle ABC, in which mAB=3.2cm, mBC=4.2cm, mCA=5.2cm.
- 4. Construct a triangle ABC, in which mAB=4.8cm, mBC=3.7cm, m \angle B=30°.

<mark>(22-17-18/I</mark>,17/II) (15/I)

5	Construct a triangle ABC, in which mAB=4.8cm, mBC=3.7cm, m \angle B=60°.	<mark>(I-</mark>		
~	$\frac{23/19/1.14/11}{23/19/1.14/11}$			
6	. Construct a triangle ABC, in which mBC=4.2cm, mCA=3.5cm, m2C=75°.	(16/1)		
7	. Construct a triangle ABC, in which mAB=3.6cm, $m < A = 75^{\circ}$, $m < B = 45^{\circ}$.	$\left(\frac{21}{11}\right)$		
8	Construct a triangle XYZ, in which mZY=2.4cm, mZX=6.4cm and m $<$ Y=90°	(21/1)		
9	Construct a triangle XYZ, in which mZY=7.5 cm, mZX=6 cm and m $<$ Y=90°.	. (24/1)		
1	0. Construct a right angled isosceles triangle whose hypotenuse is 4.8cm long	(0.0 (I))		
1	1. Define Incentre.	(23/1)		
1	2. Define right bisector of a line segment.	(22-18-14/11)		
1	3. Define Circumcentre.	mcentre. (22-21/I, 21-16/II)		
1	4. Define Orthocenter. (2)	<mark>2-21-</mark> 17-19/I,14/II)		
1	5. Define Centroid of the triangle. (I-24/18/1,1)	<mark>8-II,15/II,16/I)</mark>		
1	6. <u>Define point on concurrency</u> . (23/I	I)		
1	7. Define concurrent lines.			
1	8. Construct triangle ABC, in which mAB=3cm, AC=3.2cm, m \angle A=45°. (19)	9/II,18-II,13/I,13/II)		
1	9. What is meant by bisector of an angle and draw the diagram? (17/I,1	.8/I,13/I,15/I,16/II)		
2	0. Construct a triangle XYZ, in which mYZ=7.6cm, mXY=6.1cm and m \angle X=90°	[°] . <mark>(13/I,22-16/II</mark>)		
<u>Lor</u>	ng questions:			
1	Construct the following triangle DOD. Draw its altitudes and show that they a	vro concurrent		
1.	construct the following triangle PQK. Draw its <u>antitudes</u> and show that they a			
r	IIIQR = 4.5 cm $IIIPQ = 6 cm$ and $IIIPR = 5.5 cm$ ((19/11, 13/1, 13/1)		
Ζ.	construct the following triangle ABC. Draw its <u>perpendicular disectors</u> of the	e side and show that		
	they are concurrent. $\overline{AB} = 5.2$			
2	$mAB = 5.3 \text{ cm}$ $mZA = 45^{\circ} \text{ and } mZB = 30^{\circ}$	(14/1,15/11)		
3.	Construct the following ΔXYZ . Draw its three <u>medians</u> and show that they are	e concurrent.		
	$m \angle Y = 60^{\circ}, mYZ = 4.1 cm, m \angle X = 75^{\circ}.$	(16/1)		
4.	Construct the following triangle ABC. Draw its <u>bisectors</u> of the angle and sho	w that they are		
	concurrent.			
	mAB = 4.5 cm $mBC = 3.1 cm$ and $mAC = 5.2 cm$. (17/1,19)	9/1,14/1,16/11)		
_				
5.	Construct the following triangle ABC. Draw its <u>perpendicular bisectors</u> of the	e side and show that		
	they are concurrent.			
	mAB = 4.5 cm $mBC = 3.1 cm$ and $mAC = 5.2 cm$.	(14/1)		
6.	Construct the following triangle ABC. Draw its bisectors of the angles and sho	ow that they are		
	concurrent.	, i i i i i i i i i i i i i i i i i i i		
	$m\overline{AB} = 4.2$ cm $m\overline{BC} = 6$ cm and $m\overline{AC} = 5.2$ cm. (2)	<mark>24-21/18-II</mark> , 14)		
7.				
••	Construct the following triangle ABC. Draw its perpendicular bisectors of the	e side and show that		
	they are concurrent.	e side and show that		

8. Construct the following $\triangle PQR$. Draw its **<u>altitudes</u>** and show that they are concurrent.

$m\overline{XY} = 4.5 \text{ cm}$, $m\overline{YZ} = 3.4 \text{ cm}$, $m\overline{ZX} = 5.6 \text{ cm}$	(I-22/II-23/II-22/ 21/I)
10. Construct the following triangle ABC. Draw its bise	ctors of the angles. (23/I)
$m\overline{AB} = 3.6$ cm $m\overline{BC} = 4.2$ cm and $m\overline{\angle B} = 75^{\circ}$	
11.11. Construct the following triangle ABC. Draw its	bisectors of the angle verify their concurrency.
mAB=4.5cm mBC=3.1cm and mAC=5.2cm.	(24/I)
Unit-10 -16 (Geometry) Short questions:	
 What is the congruency of two triangles What is a parallelogram? In a parallelogram ABCD, mAB = 10cm. AD are respectively 7cm and 8cm, find 	s? (14/I,14/II,15/I,16/I,16/II) (I-24/I-23/23-17/I,22-17-18-16/II) The altitudes corresponding to sides AB and AD.
 Define Area of a figure. Define triangular region 	(17/II) (21.16/I)
6. Define point of concurrency	(21-10/1) (24/II)
7. Define median of triangle	(23/II)
 B. by what is meant point of trisection 9. Define square region. 10. Define rectangular region. 11. Define triangle 	(23/II) (15/II) (I-24/18-14-15/I, 13-18-21-14/II) (14/II)
12. Define congruent triangles. 13. What a triangle is called if two sides are	(17/II,19/I,18-II,15/I) e congruent? (15/II)
14. <mark>Define altitude</mark> or height of a triangle. 15. What is meant by interior of rectangle	(<u>22-18-</u> 13/I,22-19-16/II) (24/II)
 16. Define the altitude of a parallelogram. 17. State the congruent area axiom. 18. When does the area of parallelogram and 19. Find the area of the given figure. 	(19/I) nd rectangle equal
	2cm 4cm
20. Find the area of the given figure.	(II-21,17/I,19/II ,14/II)
	3cm
	6cm

 $m \angle Q = 30^{\circ}, \ m\overline{RP} = 3.6cm, \ m \angle P = 105^{\circ}.$

9. Construct the following $\triangle XYZ$. Draw its three **medians**.

(18/I)

21. If 3cm and 4cm are the two sides of a right-angled trian	gle then what should be the			
third side of the triangle?	<mark>(22-17-18-</mark> 15/I,16/II)			
22. If two angles of a triangle are of 35° and 85°, then find the	he third angle.			
23. If one angle of a right angle triangle is of 45°, then find t	hird angle.			
24. If one angle of a parallelogram is of 130°, then find the r	neasure of its remaining			
angles. (17/	′I, 19/II)			
25. What are you meant by H.S≅H.S?	(19/II,14/II,15/II)			
26. What are you meant by S. A. $A \cong S$. A. A?	(I-23/22/II)			
27. What will be the angle for shortest distance from an out	side point to the line? (21/I)			
28. How many parts are there of a theorem? Name them.	(15/II)			
29. Write difference between ratio and proportion.	(19/I)			
30. If two angles of a triangle are 90° and 60°, then what will be the value of the third $(16/1)$				
31. How many Mid-points line segment have?	(10/1)			
32 Define complementary angles	(15/11)			
32. If $a^2 \pm b^2 < c^2$ then what kind of triangle it is?	(15/11)			
34. Write the name of these symbols \simeq and \leftrightarrow	(13/11)			
35. Write the name of these symbols $=$ $u_{1}u_{1}v_{2}$	will be the length of their			
35. If two angles of a triangle are un equal in measure, now will be the length of their (12/I)				
$\frac{26}{26}$ Define the ratio between two alike quantities $\frac{21.1}{2}$	(13/1)			
30. Define the fatto between two anke quantities. (21-1)	12^{-14}			
20 Define S.S.S. postulate	(10/I 10/II)			
20. What are similar triangles?	(10/1,10/11)			
40 Differentiate between area and region of a triangle	$(\frac{22-17}{1,17},17,17,1071)$			
41 Define hisector of an angle	(17/11/19/1/14/1)			
42 State congruent area Axiom	(19/I)			
43 Define square	(13/1)			
43. Write the symbols of congruent and similar	(1+/1)			
45. Define Interior of Triangle	(27/1)			
46. Verify that measures of sides are right-angle or not and	(1771,1771)			
(24/II)	7 m, 5 – 12 m and c – 13 m			
47 3cm 4cm and 7cm are not the lengths of the triangle Pr	cove it OR give reason			
+7. Seni, teni and 7 cm are not the lengths of the triangle. I	$(17/II 18_{II} 14/I 16/I)$			
49 Which of the following sets of length can be the length of	$(17/11,10^{-11},14/1,10/1)$			
(i)2cm, 4cm and 7cm (ii)3cm, 4cm, 5	5cm			
49. State Pythagoras theorem. <u>(22-13</u>	<u>3/I,23-22-13-14-16</u> -17/II)			
50. State the converse of Pythagoras theorem	(23/I)			
51. Describe the practical application of similar triangle.	(II-24/24/I)			
52. Verify 3cm, 4cm and 5cm are the length of sides of triar	ngle. <mark>(23-22/II)</mark>			
53. Write down the formula of Pythagoras theorem.	(18/I)			
54. Define proportion.	(18/I,23-22-21-13/II)			
55. <mark>If 13cm</mark> , 12cm and 5cm are the lengths of the triangle then verify that difference of				
measure of any two sides of a triangle is less than the third side. (23/I)				

- 57. If 10cm , 6cm and 8cm are the lengths of the triangle then verify the sum of measure of
two sides of a triangle is greater than the third side.(21-19/II)
- 58. Verify that triangle having given measures of sides is right-angled?a=5cm, b=12cm and c=13cm.(21-13/I,22-18-14/II)
- 59. Verify that triangle having given measures of sides is right-angled?

```
a=1.5 cm, b=2 cm and c=2.5 cm. (15/I)
```

- 58. Verify that 2cm, 4cm and 7cm are the lengths of triangle or not? Give reason (24/II)
- 60. Find the unknown value of x in the given figure. (I-24/23-14-15/II,23-15-14/I)
- 61. Verify that triangle having given measures of sides is right-angled? (24/I)

a=6cm, b=4cm and c= $2\sqrt[3]{13}$ cm

62. Find value of x

63. Verify that triangle having given measures of sides is right-angled? a=9cm, b=12cm and c=15cm.

(19/II,13/II)

64.Find the unknown value *x* in the figure

- 65. In a triangle ABC $\overline{DE} \parallel \overline{BC}$ if $\frac{AD}{DB} = \frac{3}{5}$ and AC=4.8cm then find mAE. (16/II)
- 66. In isosceles \triangle PQR find the value of *x* and *y*.

70

D

В

С

